Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Immunother Cancer ; 12(4)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38642938

RESUMO

BACKGROUND: Colitis caused by checkpoint inhibitors (CPI) is frequent and is treated with empiric steroids, but CPI colitis mechanisms in steroid-experienced or refractory disease are unclear. METHODS: Using colon biopsies and blood from predominantly steroid-experienced CPI colitis patients, we performed multiplexed single-cell transcriptomics and proteomics to nominate contributing populations. RESULTS: CPI colitis biopsies showed enrichment of CD4+resident memory (RM) T cells in addition to CD8+ RM and cytotoxic CD8+ T cells. Matching T cell receptor (TCR) clonotypes suggested that both RMs are progenitors that yield cytotoxic effectors. Activated, CD38+ HLA-DR+ CD4+ RM and cytotoxic CD8+ T cells were enriched in steroid-experienced and a validation data set of steroid-naïve CPI colitis, underscoring their pathogenic potential across steroid exposure. Distinct from ulcerative colitis, CPI colitis exhibited perturbed stromal metabolism (NAD+, tryptophan) impacting epithelial survival and inflammation. Endothelial cells in CPI colitis after anti-TNF and anti-cytotoxic T-lymphocyte-associated antigen 4 (anti-CTLA-4) upregulated the integrin α4ß7 ligand molecular vascular addressin cell adhesion molecule 1 (MAdCAM-1), which may preferentially respond to vedolizumab (anti-α4ß7). CONCLUSIONS: These findings nominate CD4+ RM and MAdCAM-1+ endothelial cells for targeting in specific subsets of CPI colitis patients.


Assuntos
Linfócitos T CD8-Positivos , Colite , Humanos , Células Endoteliais , Inibidores do Fator de Necrose Tumoral , Colite/induzido quimicamente , Colite/tratamento farmacológico , Linfócitos T CD4-Positivos , Esteroides/farmacologia , Esteroides/uso terapêutico , Células Estromais
2.
Mol Cancer Ther ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38417138

RESUMO

Epithelial membrane protein-2 (EMP2) is upregulated in a number of tumors and therefore remains a promising target for monoclonal antibody (mAb)-based therapy. In the current study, image guided therapy for an anti-EMP2 mAb was evaluated by positron emission tomography (PET) in both syngeneic and immunodeficient cancer models expressing different levels of EMP2 in order to enable a better understanding of its tumor uptake and off target accumulation and clearance. The therapeutic efficacy of the anti-EMP2 mAb was initially evaluated in high- and low-expressing tumors, and the mAb reduced tumor load for the high EMP2 expressing 4T1 and HEC-1-A tumors. To create an imaging agent, the anti-EMP2 mAb was conjugated to p-SCN-Bn-deferoxamine (DFO) and radiolabeled with 89Zr. Tumor targeting and tissue biodistribution were evaluated in syngeneic tumor models (4T1, CT26, and Panc02) and human tumor xenograft models (Ramos, HEC-1-A, and U87MG/EMP2). PET imaging revealed radioactive accumulation in EMP2 positive tumors within 24h post-injection, and the signal was retained for 5 days. High specific uptake was observed in tumors with high EMP2 expression (4T1, CT26, HEC-1-A, U87MG/EMP2), with less accumulation in tumors with low EMP2 expression (Panc02, Ramos). Biodistribution at 5 days post-injection revealed that the tumor uptake ranged from 2 to ~16 %ID/cc. The results show that anti-EMP2 mAbs exhibit EMP2-dependent tumor uptake with low off-target accumulation in preclinical cancer models. The development of improved anti-EMP2 antibody fragments may be useful to track EMP2 positive tumors for subsequent therapeutic interventions.

3.
Nat Commun ; 15(1): 1493, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374043

RESUMO

Ulcerative colitis (UC) is driven by immune and stromal subsets, culminating in epithelial injury. Vedolizumab (VDZ) is an anti-integrin antibody that is effective for treating UC. VDZ is known to inhibit lymphocyte trafficking to the intestine, but its broader effects on other cell subsets are less defined. To identify the inflammatory cells that contribute to colitis and are affected by VDZ, we perform single-cell transcriptomic and proteomic analyses of peripheral blood and colonic biopsies in healthy controls and patients with UC on VDZ or other therapies. Here we show that VDZ treatment is associated with alterations in circulating and tissue mononuclear phagocyte (MNP) subsets, along with modest shifts in lymphocytes. Spatial multi-omics of formalin-fixed biopsies demonstrates trends towards increased abundance and proximity of MNP and fibroblast subsets in active colitis. Spatial transcriptomics of archived specimens pre-treatment identifies epithelial-, MNP-, and fibroblast-enriched genes related to VDZ responsiveness, highlighting important roles for these subsets in UC.


Assuntos
Colite Ulcerativa , Humanos , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/genética , Integrinas/genética , Multiômica , Proteômica , Fármacos Gastrointestinais/uso terapêutico , Resultado do Tratamento , Estudos Retrospectivos
4.
bioRxiv ; 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36711576

RESUMO

Ulcerative colitis (UC) is driven by immune and stromal subsets, culminating in epithelial injury. Vedolizumab (VDZ) is an anti-integrin antibody that is effective for treating UC. VDZ is known to inhibit lymphocyte trafficking to the intestine, but its broader effects on other cell subsets are less defined. To identify the inflammatory cells that contribute to colitis and are affected by VDZ, we performed single-cell transcriptomic and proteomic analyses of peripheral blood and colonic biopsies in healthy controls and patients with UC on VDZ or other therapies. Here we show that VDZ treatment is associated with alterations in circulating and tissue mononuclear phagocyte (MNP) subsets, along with modest shifts in lymphocytes. Spatial multi-omics of formalin-fixed biopsies demonstrates trends towards increased abundance and proximity of MNP and fibroblast subsets in active colitis. Spatial transcriptomics of archived specimens pre-treatment identifies epithelial-, MNP-, and fibroblast-enriched genes related to VDZ responsiveness, highlighting important roles for these subsets in UC.

5.
Res Sq ; 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38077002

RESUMO

The bone marrow is the main site of blood cell production in adults, however, rare pools of hematopoietic stem and progenitor cells with self-renewal and differentiation potential have been found in extramedullary organs. The lung is primarily known for its role in gas exchange but has recently been described as a site of blood production in mice. Here, we show that functional hematopoietic precursors reside in the extravascular spaces of the human lung, at a frequency similar to the bone marrow, and are capable of proliferation and engraftment. The organ-specific gene signature of pulmonary and medullary CD34+ hematopoietic progenitors indicates greater baseline activation of immune, megakaryocyte/platelet and erythroid-related pathways in lung progenitors. Spatial transcriptomics mapped blood progenitors in the lung to a vascular-rich alveolar interstitium niche. These results identify the lung as a pool for uniquely programmed blood stem and progenitor cells with the potential to support hematopoiesis in humans.

6.
iScience ; 26(10): 107813, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37810211

RESUMO

Altered myeloid inflammation and lymphopenia are hallmarks of severe infections. We identified the upregulated EN-RAGE gene program in airway and blood myeloid cells from patients with acute lung injury from SARS-CoV-2 or other causes across 7 cohorts. This program was associated with greater clinical severity and predicted future mechanical ventilation and death. EN-RAGEhi myeloid cells express features consistent with suppressor cell functionality, including low HLA-DR and high PD-L1. Sustained EN-RAGE program expression in airway and blood myeloid cells correlated with clinical severity and increasing expression of T cell dysfunction markers. IL-6 upregulated many EN-RAGE program genes in monocytes in vitro. IL-6 signaling blockade by tocilizumab in a placebo-controlled clinical trial led to rapid normalization of EN-RAGE and T cell gene expression. This identifies IL-6 as a key driver of myeloid dysregulation associated with worse clinical outcomes in COVID-19 patients and provides insights into shared pathophysiological mechanisms in non-COVID-19 ARDS.

7.
Cell Stem Cell ; 30(6): 885-903.e10, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37267918

RESUMO

Tissue repair responses in metazoans are highly coordinated by different cell types over space and time. However, comprehensive single-cell-based characterization covering this coordination is lacking. Here, we captured transcriptional states of single cells over space and time during skin wound closure, revealing choreographed gene-expression profiles. We identified shared space-time patterns of cellular and gene program enrichment, which we call multicellular "movements" spanning multiple cell types. We validated some of the discovered space-time movements using large-volume imaging of cleared wounds and demonstrated the value of this analysis to predict "sender" and "receiver" gene programs in macrophages and fibroblasts. Finally, we tested the hypothesis that tumors are like "wounds that never heal" and found conserved wound healing movements in mouse melanoma and colorectal tumor models, as well as human tumor samples, revealing fundamental multicellular units of tissue biology for integrative studies.


Assuntos
Neoplasias , Cicatrização , Camundongos , Animais , Humanos , Cicatrização/genética , Pele/patologia , Neoplasias/patologia , Macrófagos/metabolismo , Fibroblastos/fisiologia , Células Estromais
8.
Cancer Immunol Res ; 10(4): 403-419, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35181780

RESUMO

The tumor immune microenvironment (TIME) is commonly infiltrated by diverse collections of myeloid cells. Yet, the complexity of myeloid-cell identity and plasticity has challenged efforts to define bona fide populations and determine their connections to T-cell function and their relationship to patient outcome. Here, we have leveraged single-cell RNA-sequencing analysis of several mouse and human tumors and found that monocyte-macrophage diversity is characterized by a combination of conserved lineage states as well as transcriptional programs accessed along the differentiation trajectory. We also found in mouse models that tumor monocyte-to-macrophage progression was profoundly tied to regulatory T cell (Treg) abundance. In human kidney cancer, heterogeneity in macrophage accumulation and myeloid composition corresponded to variance in, not only Treg density, but also the quality of infiltrating CD8+ T cells. In this way, holistic analysis of monocyte-to-macrophage differentiation creates a framework for critically different immune states.


Assuntos
Neoplasias Renais , Monócitos , Animais , Macrófagos , Camundongos , Fenótipo , Microambiente Tumoral
9.
Cell ; 185(1): 184-203.e19, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34963056

RESUMO

Cancers display significant heterogeneity with respect to tissue of origin, driver mutations, and other features of the surrounding tissue. It is likely that individual tumors engage common patterns of the immune system-here "archetypes"-creating prototypical non-destructive tumor immune microenvironments (TMEs) and modulating tumor-targeting. To discover the dominant immune system archetypes, the University of California, San Francisco (UCSF) Immunoprofiler Initiative (IPI) processed 364 individual tumors across 12 cancer types using standardized protocols. Computational clustering of flow cytometry and transcriptomic data obtained from cell sub-compartments uncovered dominant patterns of immune composition across cancers. These archetypes were profound insofar as they also differentiated tumors based upon unique immune and tumor gene-expression patterns. They also partitioned well-established classifications of tumor biology. The IPI resource provides a template for understanding cancer immunity as a collection of dominant patterns of immune organization and provides a rational path forward to learn how to modulate these to improve therapy.


Assuntos
Censos , Neoplasias/genética , Neoplasias/imunologia , Transcriptoma/genética , Microambiente Tumoral/imunologia , Biomarcadores Tumorais , Análise por Conglomerados , Estudos de Coortes , Biologia Computacional/métodos , Citometria de Fluxo/métodos , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/classificação , Neoplasias/patologia , RNA-Seq/métodos , São Francisco , Universidades
10.
Sci Rep ; 11(1): 23690, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34880292

RESUMO

Although surgery for early-stage lung cancer offers the best chance of cure, recurrence still occurs between 30 and 50% of the time. Why patients frequently recur after complete resection of early-stage lung cancer remains unclear. Using a large cohort of stage I lung adenocarcinoma patients, distinct genetic, genomic, epigenetic, and immunologic profiles of recurrent tumors were analyzed using a novel recurrence classifier. To characterize the tumor immune microenvironment of recurrent stage I tumors, unique tumor-infiltrating immune population markers were identified using single cell RNA-seq on a separate cohort of patients undergoing stage I lung adenocarcinoma resection and applied to a large study cohort using digital cytometry. Recurrent stage I lung adenocarcinomas demonstrated higher mutation and lower methylation burden than non-recurrent tumors, as well as widespread activation of known cancer and cell cycle pathways. Simultaneously, recurrent tumors displayed downregulation of immune response pathways including antigen presentation and Th1/Th2 activation. Recurrent tumors were depleted in adaptive immune populations, and depletion of adaptive immune populations and low cytolytic activity were prognostic of stage I recurrence. Genomic instability and impaired adaptive immune responses are key features of stage I lung adenocarcinoma immunosurveillance escape and recurrence after surgery.


Assuntos
Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/imunologia , Biomarcadores Tumorais , Adenocarcinoma de Pulmão/diagnóstico , Biologia Computacional/métodos , Suscetibilidade a Doenças , Epigênese Genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Variação Genética , Humanos , Masculino , Mutação , Recidiva Local de Neoplasia , Estadiamento de Neoplasias , Prognóstico , Modelos de Riscos Proporcionais , Microambiente Tumoral/genética
12.
Sci Rep ; 11(1): 11949, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099751

RESUMO

In type 1 endometrial cancer, unopposed estrogen stimulation is thought to lead to endometrial hyperplasia which precedes malignant progression. Recent data from our group and others suggest that ALDH activity mediates stemness in endometrial cancer, but while aldehyde dehydrogenase 1 (ALDH1) has been suggested as a putative cancer stem cell marker in several cancer types, its clinical and prognostic value in endometrial cancer remains debated. The aim of this study was to investigate the clinical value of ALDH1 expression in endometrial hyperplasia and to determine its ability to predict progression to endometrial cancer. Interrogation of the TCGA database revealed upregulation of several isoforms in endometrial cancer, of which the ALDH1 isoforms collectively constituted the largest group. To translate its expression, a tissue microarray was previously constructed which contained a wide sampling of benign and malignant endometrial samples. The array contained a metachronous cohort of samples from individuals who either developed or did not develop endometrial cancer. Immunohistochemical staining was used to determine the intensity and frequency of ALDH1 expression. While benign proliferative and secretory endometrium showed very low levels of ALDH1, slightly higher expression was observed within the stratum basalis. In disease progression, cytoplasmic ALDH1 expression showed a step-wise increase between endometrial hyperplasia, atypical hyperplasia, and endometrial cancer. ALDH1 was also shown to be an early predictor of EC development, suggesting that it can serve as an independent prognostic indicator of patients with endometrial hyperplasia with or without atypia who would progress to cancer (p = 0.012).


Assuntos
Família Aldeído Desidrogenase 1/genética , Biomarcadores Tumorais/genética , Hiperplasia Endometrial/genética , Neoplasias do Endométrio/genética , Regulação Neoplásica da Expressão Gênica , Lesões Pré-Cancerosas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Família Aldeído Desidrogenase 1/metabolismo , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Progressão da Doença , Hiperplasia Endometrial/enzimologia , Hiperplasia Endometrial/patologia , Neoplasias do Endométrio/enzimologia , Neoplasias do Endométrio/patologia , Feminino , Humanos , Estimativa de Kaplan-Meier , Pessoa de Meia-Idade , Lesões Pré-Cancerosas/enzimologia , Lesões Pré-Cancerosas/patologia , Prognóstico
13.
Chest ; 159(4): e237-e241, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-34022025

RESUMO

CASE PRESENTATION: A 44-year-old man presented to the ED with acute massive hemoptysis and hypoxia. His history was notable for 1 year of progressively worsening shortness of breath at both rest and with exertion. He denied chest discomfort and endorsed near syncope while driving in recent months. He recently had been treated with antibiotics for two episodes of presumed pneumonia, based on right lower lobe opacification on chest radiography.


Assuntos
Dispneia/etiologia , Hemoptise/etiologia , Artéria Pulmonar/anormalidades , Malformações Vasculares/complicações , Adulto , Diagnóstico Diferencial , Dispneia/diagnóstico , Hemoptise/diagnóstico , Humanos , Hipertensão Pulmonar/diagnóstico , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/fisiopatologia , Masculino , Artéria Pulmonar/diagnóstico por imagem , Pressão Propulsora Pulmonar/fisiologia , Índice de Gravidade de Doença , Tomografia Computadorizada por Raios X , Malformações Vasculares/diagnóstico
14.
J Reprod Immunol ; 145: 103309, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33774530

RESUMO

Epithelial membrane protein 2 (EMP2) is a tetraspan membrane protein that has been revealed in cancer and placental models to mediate a number of vascular responses. Recently, Emp2 modulation has been shown to have an immunologic effect on uterine NK cell recruitment in the mouse placenta. Given the importance of immune cell populations on both placental vascularization and maternal immune tolerance of the developing fetus, we wanted to better characterize the immunologic effects of Emp2 at the placental-fetal interface. We performed flow cytometry of WT and Emp2 KO C57Bl/6 mouse uterine horns at GD12.5 to characterize immune cell populations localized to the various components of the maternal-fetal interface. We found that Emp2 KO decidua and placenta showed an elevated overall percentage of CD45+ cells compared to WT. Characterization of CD45+ cells in the decidua of Emp2 KO dams revealed an increase in NK cells, whereas in the placenta, Emp2 KO dams showed an increased percentage of M1 macrophages (with an increased ratio of M1/M2 macrophages). Given the differences detected in uNK cell populations in the decidua, we further characterized the interaction between Emp2 genetic KO and NK cell deletion via anti-asialo GM1 antibody injections. While the double knock-out of Emp2 and NK cells did not alter individual pup birthweight, it significantly reduced total litter weight and size by ∼50 %. In conclusion, Emp2 appears to regulate uNK and macrophage cell populations in pregnancy.


Assuntos
Decídua/imunologia , Histocompatibilidade Materno-Fetal , Células Matadoras Naturais/imunologia , Macrófagos/imunologia , Glicoproteínas de Membrana/metabolismo , Animais , Decídua/metabolismo , Feminino , Tolerância Imunológica , Imunidade Inata , Células Matadoras Naturais/metabolismo , Macrófagos/metabolismo , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , Modelos Animais , Gravidez
15.
Nature ; 591(7848): 124-130, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33494096

RESUMO

Although infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has pleiotropic and systemic effects in some individuals1-3, many others experience milder symptoms. Here, to gain a more comprehensive understanding of the distinction between severe and mild phenotypes in the pathology of coronavirus disease 2019 (COVID-19) and its origins, we performed a whole-blood-preserving single-cell analysis protocol to integrate contributions from all major immune cell types of the blood-including neutrophils, monocytes, platelets, lymphocytes and the contents of the serum. Patients with mild COVID-19 exhibit a coordinated pattern of expression of interferon-stimulated genes (ISGs)3 across every cell population, whereas these ISG-expressing cells are systemically absent in patients with severe disease. Paradoxically, individuals with severe COVID-19 produce very high titres of anti-SARS-CoV-2 antibodies and have a lower viral load compared to individuals with mild disease. Examination of the serum from patients with severe COVID-19 shows that these patients uniquely produce antibodies that functionally block the production of the ISG-expressing cells associated with mild disease, by activating conserved signalling circuits that dampen cellular responses to interferons. Overzealous antibody responses pit the immune system against itself in many patients with COVID-19, and perhaps also in individuals with other viral infections. Our findings reveal potential targets for immunotherapies in patients with severe COVID-19 to re-engage viral defence.


Assuntos
Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/fisiopatologia , Interferons/antagonistas & inibidores , Interferons/imunologia , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Anticorpos Antivirais/sangue , Formação de Anticorpos , Sequência de Bases , COVID-19/sangue , COVID-19/virologia , Feminino , Humanos , Imunoglobulina G/imunologia , Interferons/metabolismo , Masculino , Neutrófilos/imunologia , Neutrófilos/patologia , Domínios Proteicos , Receptor de Interferon alfa e beta/antagonistas & inibidores , Receptor de Interferon alfa e beta/imunologia , Receptor de Interferon alfa e beta/metabolismo , Receptores de IgG/imunologia , Análise de Célula Única , Carga Viral/imunologia
16.
Cell Metab ; 32(6): 1063-1075.e7, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33264598

RESUMO

Energetic metabolism reprogramming is critical for cancer and immune responses. Current methods to functionally profile the global metabolic capacities and dependencies of cells are performed in bulk. We designed a simple method for complex metabolic profiling called SCENITH, for single-cell energetic metabolism by profiling translation inhibition. SCENITH allows for the study of metabolic responses in multiple cell types in parallel by flow cytometry. SCENITH is designed to perform metabolic studies ex vivo, particularly for rare cells in whole blood samples, avoiding metabolic biases introduced by culture media. We analyzed myeloid cells in solid tumors from patients and identified variable metabolic profiles, in ways that are not linked to their lineage or their activation phenotype. SCENITH's ability to reveal global metabolic functions and determine complex and linked immune-phenotypes in rare cell subpopulations will contribute to the information needed for evaluating therapeutic responses or patient stratification.


Assuntos
Metabolismo Energético , Metaboloma , Neoplasias/metabolismo , Análise de Célula Única/métodos , Adulto , Animais , Células Cultivadas , Feminino , Fibroblastos , Humanos , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade
17.
Res Sq ; 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33140041

RESUMO

While SARS-CoV-2 infection has pleiotropic and systemic effects in some patients, many others experience milder symptoms. We sought a holistic understanding of the severe/mild distinction in COVID-19 pathology, and its origins. We performed a wholeblood preserving single-cell analysis protocol to integrate contributions from all major cell types including neutrophils, monocytes, platelets, lymphocytes and the contents of serum. Patients with mild COVID-19 disease display a coordinated pattern of interferonstimulated gene (ISG) expression across every cell population and these cells are systemically absent in patients with severe disease. Severe COVID-19 patients also paradoxically produce very high anti-SARS-CoV-2 antibody titers and have lower viral load as compared to mild disease. Examination of the serum from severe patients demonstrates that they uniquely produce antibodies with multiple patterns of specificity against interferon-stimulated cells and that those antibodies functionally block the production of the mild disease-associated ISG-expressing cells. Overzealous and autodirected antibody responses pit the immune system against itself in many COVID-19 patients and this defines targets for immunotherapies to allow immune systems to provide viral defense.

18.
bioRxiv ; 2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33140050

RESUMO

While SARS-CoV-2 infection has pleiotropic and systemic effects in some patients, many others experience milder symptoms. We sought a holistic understanding of the severe/mild distinction in COVID-19 pathology, and its origins. We performed a whole-blood preserving single-cell analysis protocol to integrate contributions from all major cell types including neutrophils, monocytes, platelets, lymphocytes and the contents of serum. Patients with mild COVID-19 disease display a coordinated pattern of interferon-stimulated gene (ISG) expression across every cell population and these cells are systemically absent in patients with severe disease. Severe COVID-19 patients also paradoxically produce very high anti-SARS-CoV-2 antibody titers and have lower viral load as compared to mild disease. Examination of the serum from severe patients demonstrates that they uniquely produce antibodies with multiple patterns of specificity against interferon-stimulated cells and that those antibodies functionally block the production of the mild disease-associated ISG-expressing cells. Overzealous and auto-directed antibody responses pit the immune system against itself in many COVID-19 patients and this defines targets for immunotherapies to allow immune systems to provide viral defense. ONE SENTENCE SUMMARY: In severe COVID-19 patients, the immune system fails to generate cells that define mild disease; antibodies in their serum actively prevents the successful production of those cells.

19.
Mol Cancer Ther ; 19(8): 1682-1695, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32451329

RESUMO

Little is known about the role of epithelial membrane protein-2 (EMP2) in breast cancer development or progression. In this study, we tested the hypothesis that EMP2 may regulate the formation or self-renewal of breast cancer stem cells (BCSC) in the tumor microenvironment. In silico analysis of gene expression data demonstrated a correlation of EMP2 expression with known metastasis-related genes and markers of cancer stem cells (CSC) including aldehyde dehydrogenase (ALDH). In breast cancer cell lines, EMP2 overexpression increased and EMP2 knockdown decreased the proportion of stem-like cells as assessed by the expression of the CSC markers CD44+/CD24-, ALDH activity, or by tumor sphere formation. In vivo, upregulation of EMP2 promoted tumor growth, whereas knockdown reduced the ALDHhigh CSC population as well as retarded tumor growth. Mechanistically, EMP2 functionally regulated the response to hypoxia through the upregulation of HIF-1α, a transcription factor previously shown to regulate the self-renewal of ALDHhigh CSCs. Furthermore, in syngeneic mouse models and primary human tumor xenografts, mAbs directed against EMP2 effectively targeted CSCs, reducing the ALDH+ population and blocking their tumor-initiating capacity when implanted into secondary untreated mice. Collectively, our results show that EMP2 increases the proportion of tumor-initiating cells, providing a rationale for the continued development of EMP2-targeting agents.


Assuntos
Anticorpos Monoclonais/farmacologia , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/patologia , Regulação Neoplásica da Expressão Gênica , Glicoproteínas de Membrana/metabolismo , Células-Tronco Neoplásicas/patologia , Microambiente Tumoral/imunologia , Animais , Apoptose , Biomarcadores Tumorais/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Proliferação de Células , Transição Epitelial-Mesenquimal , Feminino , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Metástase Neoplásica , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Cell ; 177(3): 556-571.e16, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-30955881

RESUMO

Differentiation of proinflammatory CD4+ conventional T cells (Tconv) is critical for productive antitumor responses yet their elicitation remains poorly understood. We comprehensively characterized myeloid cells in tumor draining lymph nodes (tdLN) of mice and identified two subsets of conventional type-2 dendritic cells (cDC2) that traffic from tumor to tdLN and present tumor-derived antigens to CD4+ Tconv, but then fail to support antitumor CD4+ Tconv differentiation. Regulatory T cell (Treg) depletion enhanced their capacity to elicit strong CD4+ Tconv responses and ensuing antitumor protection. Analogous cDC2 populations were identified in patients, and as in mice, their abundance relative to Treg predicts protective ICOS+ PD-1lo CD4+ Tconv phenotypes and survival. Further, in melanoma patients with low Treg abundance, intratumoral cDC2 density alone correlates with abundant CD4+ Tconv and with responsiveness to anti-PD-1 therapy. Together, this highlights a pathway that restrains cDC2 and whose reversal enhances CD4+ Tconv abundance and controls tumor growth.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Células Dendríticas/imunologia , Animais , Antígenos de Neoplasias/imunologia , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Citocinas/metabolismo , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Toxina Diftérica/imunologia , Fatores de Transcrição Forkhead/metabolismo , Humanos , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Linfonodos/imunologia , Linfonodos/metabolismo , Ativação Linfocitária , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Quimiocinas/metabolismo , Linfócitos T Reguladores/imunologia , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...